
Naval Research Laboratory, Code 5540, Washington, D.C. 20375-5337

Handbook for the Computer
Security Certification of
Trusted Systems

Chapter 1: Overview
Chapter 2: Development Plan
Chapter 3: Security Policy Model
Chapter 4: Descriptive Top-Level Specification
Chapter 5: Design
Chapter 6: Assurance Mappings
Chapter 7: Implementation
Chapter 8: Covert Channel Analysis
Chapter 9: Security Features Testing
Chapter 10: Penetration Testing

NRL Technical Memorandum 5540:081A, 24 Jan 1995



For additional copies of this report, please send e-mail to
landwehr@itd.nrl.navy.mil, or retrieve PostScript via
http://www.itd.nrl.navy.mil/ITD/5540/publications/handbook
(e.g., using Mosaic).



Assurance Mappings:
A Chapter of the

Handbook for the Computer Security Certification of
Trusted Systems

John McHugh, Principal Investigator

Department of Computer Science
Portland State University

Portland, Oregon

Charles Payne
Naval Research Laboratory

Washington, DC
and

Charles R. Martin
The University of North Carolina

Chapel Hill, North Carolina



Contents

1 Introduction 2
1.1 Organization of This Chapter : : : : : : : : : : : : : : : : : : : : : : : : : 3

2 Overview of the Assurance Mappings 4
2.1 What is an assurance mapping? : : : : : : : : : : : : : : : : : : : : : : : : 4

2.1.1 DTLS to Policy Mapping : : : : : : : : : : : : : : : : : : : : : : : 5
2.1.2 Code to DTLS Mapping : : : : : : : : : : : : : : : : : : : : : : : : 5

2.2 Where does the assurance mapping fit in the life cycle? : : : : : : : : : : : : 6
2.3 What risks are dealt with through an assurance mapping? : : : : : : : : : : : 7
2.4 What resources are required? : : : : : : : : : : : : : : : : : : : : : : : : : 8

3 Mapping the DTLS to the Security Policy 10
3.1 Identifying the target security policy : : : : : : : : : : : : : : : : : : : : : : 10
3.2 Mapping the SPM to the COMPUSEC Policy : : : : : : : : : : : : : : : : : 11
3.3 Mapping the DTLS to the SPM : : : : : : : : : : : : : : : : : : : : : : : : 13

4 Mapping the Implementation to the DTLS 15
4.1 Overview : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 15

4.1.1 Baby steps vs. Giant Steps : : : : : : : : : : : : : : : : : : : : : : : 15
4.1.2 Maintenance : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 16
4.1.3 The role of standards like 2167A and SDD : : : : : : : : : : : : : : 16

4.2 Decomposing the TCB : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 16
4.2.1 Analysis of the Code : : : : : : : : : : : : : : : : : : : : : : : : : : 17
4.2.2 Graph based methods : : : : : : : : : : : : : : : : : : : : : : : : : 17
4.2.3 Dealing with data structures : : : : : : : : : : : : : : : : : : : : : : 18
4.2.4 Code and Data that do not map up : : : : : : : : : : : : : : : : : : : 18

4.3 DTLS Decomposition : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 19
4.3.1 Identifying mappable specifications in the DTLS : : : : : : : : : : : 19
4.3.2 Analysis of a DTLS : : : : : : : : : : : : : : : : : : : : : : : : : : 19

4.4 Identifying TCB to DTLS Correspondence : : : : : : : : : : : : : : : : : : 20
4.4.1 Hooks : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 20
4.4.2 Constructing hooks in the mapped code base : : : : : : : : : : : : : 21
4.4.3 Hooks in the DTLS : : : : : : : : : : : : : : : : : : : : : : : : : : 21
4.4.4 Tabular methods : : : : : : : : : : : : : : : : : : : : : : : : : : : : 21
4.4.5 Databases : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 22

4.5 Making the Mapping Argument : : : : : : : : : : : : : : : : : : : : : : : : 22

1



Eventually, there are two “machines”. On the one hand there is the physical
machine that : : : can go wrong : : :. On the other hand there is the abstract
machine : : :, the “thinkable” machine for which the programmer programs
and with respect to which the question of program correctness is settled.

Originally I viewed it as the function of the abstract machine to provide a
truthful picture of the physical reality. Later, however, I learned to consider
the abstract machine as the “true” one, because that is the only one we can
“think”; it is the physical machine’s purpose to supply “a working model”,
a (hopefully!) sufficiently accurate physical simulation of the true, abstract
machine.

Edsger W. Dijkstra
A Discipline of Programming

1976

1 Introduction

A system must satisfy strict assurance requirements for successful evaluation at the B3 class of
the Trusted Computer System Evaluation Criteria (TCSEC) [9]. Many of these requirements
are essentially requirements on process or on documentation. Unlike many other areas, TC-
SEC requirements are a job of selling to an uncertain buyer: TCSEC evaluation is a matter of
convincing a responsible team of evaluators that the system can be trusted to manage sensitive
data in an appropriate fashion.

The definition of an “appropriate fashion” comes from the system’s security policy, and
from security requirements which are detailed in the descriptive top-level specification (DTLS).
The detailed information necessary to convince the evaluators is provided in the form of an as-
surance mapping between the trusted computing base (TCB), which implements the security-
related functions, and the security policy, which defines the secure behavior of those functions.
The job of the developers is to sell the trustworthiness of the system to the evaluators using
these mappings by making a convincing argument that the TCB correctly enforces the security
policy. In other words, the developer must convince the evaluators that the physical machine
embodied in the TCB is an accurate simulation of the true, abstract machine prescribed by the
security policy. The abstract machine is first described in the Security Policy Model.

This chapter identifies the certification goals for the assurance mappings. Unlike other cer-
tification deliverables, the assurance mappings are generated throughout the development life-
cycle. They are a collection of documents rather than a single document, and a member of the
collection may be part of another certification deliverable, such as the Security Policy Model.
The developer must present the mappings as a coherent whole.

This chapter also describes methods that can be used to hand-examine the code for mini-
mality, because the TCSEC also requires the TCB to be “minimized” in the sense that it con-
tains nothing not required to correctly implement the security-related functions. Proving that
this requirement has been met is very difficult to do.

2



1.1 Organization of This Chapter

While the assurance mappings are generated throughout almost the entire development effort—
from the security modeling exercise to the implementation in source code—and while they
address all security-relevant requirements from the most abstract to the very low-level and de-
tailed, the process of constructing these mappings changes little throughout the development
process. The same technique is applied repeatedly. Section 2, “Overview of the Assurance
Mappings,” discusses the technique and answers some commonly asked questions. For conve-
nience, we divide the assurance mappings into two major parts. Section 3 addresses the DTLS
to security policy mapping, and Section 4 addresses the TCB code to DTLS mapping. There
is a dearth of literature in this area. Those references that have come to our attention are listed
in the bibliography.

3



2 Overview of the Assurance Mappings

2.1 What is an assurance mapping?

Given two representations x and y of a structure, if we can express their behavior as assertions
Ax and Ay, respectively, then we say that y corresponds to x if

Ay ) Ax:

In other words, if x behaves in a particular way, then y must also, but x is allowed to exhibit
some behavior that y does not. Viewed another way, the traces in which y may engage are a
subset of the traces in which x may engage. In our case, Ax and Ay are assertions on security–
critical behavior.

In reality, assurance mappings are much less mathematical than suggested above, but we
must understand the semantics of the exercise rigorously in order to determine that it is being
performed correctly. A simpler approach is described below and illustrated in Figure 1.

x

y

Figure 1: Abstract Mappings

1. Identify the critical elements of y (illustrated by the closed circles in Figure 1).

2. Derive a correspondence between the critical elements of y and all of x. Show that non-
critical elements of y (the open circles in Figure 1) do not need to be mapped tox. Ensure
that all of x is mapped to y, as illustrated.

3. Attempt to express the critical properties that are satisfied by x, i.e., Ax, in terms of y,
i.e., Ay, using the element correspondence.

4. Examine y carefully, and demonstrate informally that it satisfies the conditions of Ay.

Therefore, an assurance mapping consists of four components:

� An exhaustive identification of mappable elements of the primary structure.

� An exhaustive identification of the mappable elements in a secondary structure.

� A mapping: an identification of the elements of the primary structure with subsets of the
elements of the secondary structure.

4



� A rigorous and convincing argument that the properties of the primary structure are re-
flected in the secondary structure.

All of the mappable elements of the primary structure, e.g., x, are considered critical. Most
of the mappable elements of the secondary structure, e.g., y, are considered critical. While
non-critical elements are not mapped, their presence in y must be justified.

2.1.1 DTLS to Policy Mapping

For the DTLS to policy mapping, we proceed in two steps. First we demonstrate that the Se-
curity Policy Model (SPM) is an accurate restatement of the policy. It may not be true that
the SPM is a complete restatement of the security policy, because for reasons of simplicity, the
SPM may not restate all of the requirements in the policy. For example, the SPM may not in-
clude a trusted audit requirement. The expense of formalization and proof may preclude the
developer from modeling any requirements that do not address specifically the prevention of
security violations. We noted in the Handbook chapter on the SPM that completeness of the
SPM may be negotiated between the developer and the evaluator. Consequently, a slight inter-
pretation of our mapping procedure is necessary for the SPM to security policy mapping. In
the steps and figure above, let x be the SPM and y be the security policy. Steps 1 and 2 remain
the same. For steps 3 and 4, reverse the occurrences of x and y.

Second, we demonstrate that the kernel calls and system structures of the DTLS are consis-
tent with the instructions and the computational framework of the SPM. The kernel calls and
system structures of the DTLS represent requirements on the underlying TCB. The SPM’s in-
structions are a computational representation of the formal assertions. The DTLS kernel calls
should restate the instructions at a lower level of abstraction. The mapping between the DTLS
and the SPM will resemble Figure 1 when x is the SPM and y is the DTLS. In other words,
all instructions in the SPM should be mapped to the calls of the DTLS, but some calls in the
DTLS may not map to SPM instructions. The unmapped DTLS calls must be justified in the
mapping.

2.1.2 Code to DTLS Mapping

TCB

Universe

System Requirements

DTLS

Figure 2: A Code to DTLS Mapping

5



Applying the abstract mapping process of Figure 1 to the code to DTLS mapping, results in
the situation illustrated in Figure 2. The DTLS can be viewed as though it is contained within
a more general set of System Requirements. The System Requirements are, in turn, contained
within an arbitrary Universe of requirements. All of the critical features of the TCB (the closed
circles) are either responding to some requirement of the DTLS or to some System requirement
that is not part of the DTLS but must be contained in the TCB for some reason. We should not
find any TCB functionality that responds solely to requirements from the external universe (as
represented by the open circles in the figure).

Conceptually, the system overall could be described in terms of an assurance mapping be-
tween all the system specifications and all the code implementing those specifications. We are
concerned with constructing an assurance mapping between the components of the TCB and
the mappable elemeents, i.e., the requirements, in the DTLS. The mappable elements for the
DTLS were identified earlier during the DTLS to SPM mapping. The TCB source code must
now be decomposed into a collection of separately identified, discrete components.

Each component of the TCB must be identified as contributing to the satisfaction of some
requirement. Many of these requirements are contained within the DTLS; some of these re-
quirements may not be. All requirements in the DTLS must be identified with components of
the TCB that implement those requirements. This means that the TCB will actually contain
two parts: a collection of components that are mapped to components of the DTLS, and those
that are not.

Developing confidence in the TCB breaks similarly into two parts: we must first argue that
those TCB components mapped to the DTLS requirements satisfy those requirements. It is
equally important to identify those TCB components that are not mapped to requirements in the
DTLS, and then answer two questions about each: (1) what other system-wide requirements
do these components satisfy; and (2) why must these components be in the TCB?

2.2 Where does the assurance mapping fit in the life cycle?

Assurance mappings tie together views of the system at different levels of detail and abstrac-
tion. Because the validity of a mapping can be affected by changes to either of the items for
which correspondence is being shown, the actual mapping process and the production of the
final mapping documents should take place late in the development portion of the life cycle pro-
cess. The project manager should ensure that great effort is not spent producing mappings that
will require extensive revisions due to changes in the system representations being mapped.
Experience shows that substantial code changes can and do occur during system integration
and testing, no matter how undesirable that may be. Thus, the code to DTLS mapping should
be deferred until it is clear that the code will not undergo substantial change.

On the other hand, the system security policy is usually defined early in the development
process. If a rational development approach is followed, the DTLS will also be an early deliv-
erable. The mapping between the DTLS and the security policy can be performed whenever
both have been defined and it is clear that neither will undergo substantial revision. A cau-
tionary note is in order, however. Although it is undesirable, it is all to common to separate
the system development responsibilities from the security engineering responsibilities. As a
result, the TCSEC deliverables, i.e., the security policy, DTLS, etc., are developed in parallel
with the system implementation—creating two views of the system that diverge due to poor or

6



non-existent communications between the two development teams. If this occurs, the DTLS
and the security policy may have to change after the implementation is finished in order to align
them with the actual system. If this kind of approach is followed, performing the mapping be-
tween the policy and the DTLS in the absence of the implementation may incur substantial
risks of rework.

This is not to say that all mapping work should be ignored until the items that are to be
mapped are finished. As the security policy, DTLS, and implementation are being created, the
developers must constantly be aware that the mapping will be required at some point. As work
products such as the security policy, the SPM, the DTLS, and the design for the implementa-
tion are being developed, each should be evaluated with respect to the mapping requirement.
Design tradeoff analyses should include ease of mapping to the DTLS as a factor in consid-
ering alternative designs. The implementation should be structured to facilitate the mapping.
The DTLS should be organized so as to support both the code and security policy mappings.

2.3 What risks are dealt with through an assurance mapping?

There are two classes of risks that are (at least partially) mitigated by the assurance mapping
process. The first is the risk that security flaws have been deliberately introduced into the sys-
tem maliciously, to create a subvertable system. The second is the risk that errors in the design
or implementation of the system could result in its compromise. Following the taxonomy of
Landwehr[6], we see a wide variety of flaws that could be detected in the mapping process.
These flaws are divided into two primary classes: intentional and inadvertent.

In particular, the mapping process is one place in which a search for intentional, malicious
flaws can be made. These would typically include Trojan Horse and Trapdoor mechanisms
and could include Logic/Time Bomb mechanisms. In the intentional, nonmalicious category,
the mapping process is not intended to address covert channels, though it might identify mech-
anisms that could be used to construct covert channels. It could identify flaws in the miscella-
neous category, intentional, nonmalicious, other, but many of the examples given in this cate-
gory are based on very subtle flaws that would be more likely to be discovered during penetra-
tion or security testing. In general, the analysis of the implementation that is required during
the code to DTLS mapping should be sufficiently thorough to minimize the possibility that in-
tentional malicious code has been introduced into the implementation. It should also aid in
identifying intentional, nonmalicious flaws.

The mapping process should help identify many inadvertent flaws that may arise during
implementation. Because each part of the implementation must be shown to respond to either
a DTLS requirement or to some other system functional requirement that must be a part of
the TCB, the inspection process involved in the mapping will focus on a variety of potential
problems. These are variously categorized as:

� validation errors that occur when a program fails to check assumptions made about pa-
rameters,

� domain errors in which assumptions about protection domains are violated,

� serialization or aliasing errors that permit unexpected changes in validated parameters
either because they are accessible in multiple threads of control or by different names in
the same thread of control (time of check to time of use errors),

7



� identification/authorization errors in which the identity or authority of an invoking agent
is inadequately checked,

� boundary condition errors in which constraints on resource allocation are not adequately
checked, and

� other exploitable logic errors, which is a catch-all for errors that do not fall into one of
the above categories.

If carried out conscientiously, the code to DTLS mapping will have a good chance of iden-
tifying implementation errors in all of the categories listed. Errors in the DTLS or in the se-
curity policy can also be identified during the mapping process. Whenever the mapping effort
uncovers an inconsistency between the entities being mapped, the inconsistency must be re-
solved. It is not necessarily the case that the more concrete representation is at fault and there
is always the possibility that the implementor’s intuition led to a correct solution in spite of a
faulty specification. It is also possible for the mapping process to identify errors even though
a faulty specification has been faithfully implemented. For this to happen, we must rely on the
experience and skill of the mapping team and their ability to identify aspects of the system that
“just don’t feel right.”

2.4 What resources are required?

The mapping process requires both time and manpower to perform. The code to DTLS map-
ping will consume far more resources than the DTLS to security policy mapping. The amount
of time that should be allocated is difficult to estimate as it depends on a variety of factors in-
cluding the extent to which the code and DTLS are similarly structured, the amount of detail in
the security policy and in the DTLS, etc. The effort is substantial and we do not have sufficient
historical data to accurately bound the level of effort involved. As a rule of thumb, the effort
allocated for a correspondence mapping on a pair of entities (code and DTLS or DTLS and
security policy) should be at least five times that allocated for doing a detailed walkthrough or
inspection on the more concrete of the entities involved in the mapping. In cases where the
entities being mapped involve greatly different levels of abstraction or where the entities have
substantially different structures, much more effort will be required.

The team that performs the mapping should be familiar with both the system requirements
and with the implementation. At the same time, the need to consider the possibility of inten-
tional, malicious flaws dictates that developers (or specifiers) should not be responsible for
mapping their own work. In a suitably large system, it should be possible to have developers
responsible for one component or subsystem perform the mapping for another. An alternative
is to have the mapping performed by an external group such as the developer’s quality assur-
ance organization or an independent verification and validation contractor. In any event, the
mapping team must be capable of understanding and explaining to the evaluators the structure
and functioning of each of the entities being mapped. Having the mapping performed by an
independent group can also serve to examine the quality of the implementation and the usabil-
ity of its documentation. As is noted in the Implementation Evaluation Guideline chapter of
this handbook [3], these are important factors that are not directly addressed by the evaluation
criteria.

8



The evaluator has certain obligations in evaluating a mapping that is presented by the devel-
opers. In particular, the evaluator must be prepared to interpret the TCSEC’s mapping require-
ments for the trusted system and the mission that it supports. The evaluator must be familiar
with the specification techniques used at each stage of the life cycle, and he or she should be
aware of alternative mapping techniques. Finally, the evaluator must understand the purpose
and scope of the assurance argument.

9



Kernel Calls

System Structures

Instructions

Assertions

Computational Framework

Instructions

Assertions

Assumptions

Assertions

Assumptions

Formal Description

Informal Description

Descriptive
Top-Level
Specification

Security Policy
Model

Security
Policy9>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>;

-�

�-
-�

�-

-�

�-

-�

�--�

�-
-�

�-

Figure 3: Mapping the DTLS to the Security Policy

3 Mapping the DTLS to the Security Policy

The TCSEC imposes the following requirements on the DTLS, SPM and security policy for a
B3 TCB.

� The formal model shall be “proven that it is sufficient to enforce the security policy”.

� “The specific TCB protection mechanisms shall be identified and an explanation given
to show that they satisfy the model.”

This section describes the assurance mappings, highlighted in Figure 3, necessary to satisfy
these requirements. The arrows along the left illustrate the mappings that we will consider.
We proceed from top to bottom to form the argument that the DTLS is sufficient to satisfy
the security policy. First, however, we must understand which security policy the DTLS must
satisfy.

3.1 Identifying the target security policy

As Sterne noted, there are many definitions of the term “security policy” [14]. Sterne distin-
guishes three major types of policy:

� security policy objectives — constraints imposed from outside an organization, such as
by a government entity,

10



� organizational security policy — constraints that an organization imposes on its own
practices, and

� automated security policy — constraints that an organization places on the computer that
supports the organization.

Unfortunately, two critical elements are missing from his policy framework: the mission in
which the organization engages (and which the computer supports), and the use of information
security (INFOSEC) countermeasures (instead of just computer security countermeasures) to
support that mission. We modified Sterne’s framework to include these elements [11]. Figure 4
illustrates our modified policy framework and the derivation of a computer security (COM-
PUSEC) policy from the security policy objectives.

Central to our policy framework is the INFOSEC policy that defines requirements on the
INFOSEC countermeasures. These countermeasures can be drawn from any of the INFOSEC
disciplines, such as TEMPEST, administrative security, COMPUSEC, communications secu-
rity, physical security, personnel security and others. Together they address the threats targeted
by the INFOSEC policy, which in turn addresses threats to the organization’s mission.

The COMPUSEC policy defines requirements on the COMPUSEC countermeasure, i.e.,
the trusted system. It identifies the assertions that must be enforced by the trusted system, and
it identifies any assumptions about enforcement provided by the trusted system’s environment
(i.e., the other INFOSEC countermeasures). The COMPUSEC policy is the target of our as-
surance mapping.

3.2 Mapping the SPM to the COMPUSEC Policy

Effective communication of the SPM includes an informal description of the model, a formal
description, and a validity argument. The informal description includes a user’s view of the
system being modeled, a set of assertions that the system must enforce, the set of assumptions
that underlie those assertions, and the behavior-generating instructions for the model. The for-
mal description restates the assertions and the instructions in a mathematical framework.

The validity argument embodies the assurance mapping between the SPM and the COM-
PUSEC policy. The assertions and assumptions of the informal description are shown to be
derived from the COMPUSEC policy, the formal assertions are shown to correspond to the
informal assertions, and the behavior-generating, formal instructions are shown to satisfy the
constraints of the formal assertions. Each of these elements of the validity argument is ad-
dressed below.

1. Map the informal description of the SPM to the COMPUSEC policy.

To begin, the COMPUSEC policy should be examined for explicit and implicit asser-
tions and assumptions. They will be the targets of the mapping. Then a correspondence
argument, e.g., a table, should be constructed that maps the assertions and assumptions
of the informal description of the SPM to the assertions and assumptions of the COM-
PUSEC policy. The mapping should include any justification for requirements in the
COMPUSEC policy that are not restated in the SPM.

2. Map the formal description to the informal description.

11



Mission Threats

Organizational
Security Policy

Security Policy
Objectives

INFOSEC
Policy

Operational
Requirements

TEMPEST
Policy

Other
Policy

Administrative
Security Policy

Physical Security
Policy

COMSEC
Policy

Personnel Security
Policy

COMPUSEC
Policy

Operations Concept
Definition

Security Requirements
Analysis

Figure 4: Derivation of the COMPUSEC Policy

12



In other words, they should be two descriptions of the same entity! This will not be a
rigorous mapping; instead, as the formal description is constructed, it should be obvious
how it relates to the informal description.

3. Demonstrate the sufficiency of the SPM.

We demonstrate that the SPM is sufficient to enforce the COMPUSEC policy by proving
that the behavior generated by the SPM’s formal instructions satisfies the constraints of
the formal assertions (which are derived from the COMPUSEC policy). This is one of
the most difficult tasks of the modeling effort. The assertions are post-conditions for
each instruction. We prove that an empty sequence of instructions satisfies the assertions,
then we prove that, for each instruction, if an arbitrary sequence of length n satisfies
the assertions, then the sequence with the chosen instruction appended also satisfies the
assertions. This is the only formal proof required in the assurance argument for a TCSEC
B3 evaluation.

If these three steps are completed successfully, then by transitivity we can assert that the
formal instructions satisfy the COMPUSEC policy. The formal instructions are a strong foun-
dation for creating a secure design for the trusted system: they are expressed in a computational
framework that models the trusted system, and they manipulate abstract representations of the
data structures upon which the security of the system will be based. The primary task hereafter
is demonstrating that the formal instructions are implemented correctly.

3.3 Mapping the DTLS to the SPM

The assurance mapping from the DTLS to the SPM is a demonstration that the kernel calls
and system structures of the DTLS correspond to the formal instructions and computational
framework, respectively, of the SPM. We must argue that the kernel calls are an appropriate
refinement of the formal instructions. Then we will argue in Section 4 that the TCB code cor-
rectly implements the requirements specified in the kernel calls.

However, our task is not so straightforward if the SPM does not include behavior-generating
instructions. McLean [7] notes that the term “security model” has two distinct uses: as a par-
ticular mechanism for enforcing confidentiality and as a specification of the system’s confi-
dentiality requirements. The latter use, McLean continues, is not a “model” at all since it does
not specify a particular mechanism. The mechanism to which McLean refers are the behavior-
generating instructions. Millen [8] calls an SPM with instructions a concrete SPM, while an
SPM without instructions is called an abstract SPM. Whether the SPM is concrete or abstract
impacts the assurance mapping significantly.

The Bell and LaPadula SPM [1] is a concrete SPM. It contains eleven instructions, or rules
of operation, that may be mapped to top-level TCB functions. Bell and LaPadula’s exposi-
tion of the SPM includes an interpretation for the Multics architecture. The interpretation is a
mapping between the Multics TCB functions and the rules of the SPM. The Secure Military
Message System (SMMS) SPM [5], on the other hand, is an abstract SPM. The SMMS SPM
defines an abstract state transition function T that represents all possible transitions in which
the system could engage.

There are several reasons for choosing an abstract SPM over a concrete SPM. Good soft-
ware engineering suggests that design decisions should be delayed as long as possible. Formu-

13



lating the instructions so that the assurance mapping is simplified assumes some knowledge of
the TCB architecture (at least at the DTLS level of abstraction), so if the SPM can be defined
without these assumptions, it will represent more implementations.

A trusted system development — with many traps to trip its progress — may benefit more
from a concrete SPM than from an abstract SPM. The analysis required to specify the instruc-
tions represents the kind of forethought that is needed to avoid the traps. However, if the de-
veloper chooses to define an abstract SPM, then one of the following scenarios must occur to
complete the assurance mappings. The developer must

� create a set of instructions, show that they satisfy the SPM’s assertions, and then map
the kernel calls to these instructions, or

� map the SPM’s computational framework to the system structures of the DTLS, interpret
the formal assertions for the system structures using the mapping, then prove that the
kernel calls satisfy the interpreted assertions.

As we shall see below, the developer engages the second scenario anyway when he demon-
strates the sufficiency of the DTLS, but we still believe that creating the instructions initially
is beneficial.

Given a concrete SPM then, the following steps complete the mapping from the DTLS to
the SPM.

1. Identify the kernel calls and system structures of the DTLS.

Pay particular attention to the effect of each kernel call and the system structures that it
manipulates.

2. Identify the instructions and computational framework for the SPM.

3. Construct the mapping.

Determine the correspondence between the DTLS system structures and the SPM com-
putational framework first. If an instruction affects particular elements of the computa-
tional framework, then the corresponding kernel call should manipulate the correspond-
ing system structures. Kernel calls that do not map to instructions must be justified.

4. Demonstrate the sufficiency of the DTLS.

Once the kernel calls that correspond to the formal instructions are identified, then they
must be shown to exhibit the same behavior as the instructions. Given the mapping be-
tween the system structures and the computational framework, it should be possible to
interpret the SPM’s formal assertions roughly for the DTLS and argue informally that
the kernel calls satisfy those constraints.

14



4 Mapping the Implementation to the DTLS

The TCSEC imposes the following requirement on the assurance mapping between the TCB
implementation and the DTLS.

The TCB implementation (i.e., in hardware, firmware, and software) shall be in-
formally shown to be consistent with the DTLS. The elements of the DTLS shall
be shown, using informal techniques, to correspond to the elements of the TCB.
[9]

4.1 Overview

This section acts as a catalog of tools and techniques for performing the mapping. It covers a
variety of techniques that are useful in achieving the goal of demonstrating that the code of the
system TCB performs exactly and only the functions required by the DTLS.

The purpose of performing a code to DTLS mapping is to develop evidence that will satisfy
the evaluators that the system in question is, in fact trustworthy. A large part of this process
is organizing and presenting the evidence gathered during the actual mapping into a coher-
ent and well documented argument that supports the developer’s contention that the system is
what it purports to be. This section will discuss ways in which the evaluator can apply critical
judgment to the evidence that will be presented by the developer. It should also provide the
developer with ample guidelines for organizing and presenting this evidence.

Recall our definition of an assurance mapping. It consists of four parts: (1) an identification
of the elements in the TCB to which requirements can be mapped; (2) an identification of the
elements of the DTLS, which are called requirements; (3) an actual mapping in both directions,
that is a pairing of sets of elements in the TCB and the DTLS requirements they satisfy, and
vice versa, along with an identification of those TCB elements which cannot be paired; (4) a
convincing argument for each case that the elements of the TCB correctly do what is required
by the DTLS, or contribute to satisfying some other system requirement and actually belong
in the TCB.

The methods we describe address each of these components of an assurance mapping:

1. Identifying all mappable elements in the TCB.

2. Identifying all mappable elements in the DTLS.

3. Constructing and maintaining the actual mappings.

4. Making the implementation arguments.

4.1.1 Baby steps vs. Giant Steps

For complex systems, the gap between the code and the DTLS may be too large to bridge with
a single mapping. In this case, there is likely to be a hierarchy of increasingly complex spec-
ifications between the DTLS and the code. It may be necessary to construct a hierarchy of
mappings, say code to “C-Spec”, “C-Spec” to “B-Spec” and “B-Spec” to DTLS to develop an
appropriately convincing argument.

15



Whether or not such an approach is necessary is a function of the size and complexity of
the TCB, and of the abstractness of the DTLS. Because the intermediate representations re-
quire evaluation to ensure the accuracy and completeness of the final result, the hierarchical
approach requires more effort. In fact, the hierarchical process consists of constructing a se-
quence of assurance mappings from one layer to the next, with appropriate arguments at each
level for each collection in the mapping. As a result, it should only be used when attempts at
a single-step mapping become too large or to complex to be convincing.

4.1.2 Maintenance

Few, if any, computer systems are ever finished. As the system evolves during use, the mapping
must be kept up to date if assurance is to be preserved.

This process is not trivial. There is a tendency for developers and maintenance program-
mers to view documentation of any kind as someone else’s job. We know of projects where
large investments have been made in documenting the internals of systems only to have the
investment lost when the documents were not maintained as the system evolved.

Because assurance mappings link several views of a system, it is critical to maintain them
along with the code and specifications. Not only must the links between the representations be
kept up to date, but the arguments that they support must be revalidated after each change.

Maintaining the assurance mappings requires effort. If this effort is not planned for, bud-
geted, and ultimately expended, the initial assurance will slip away, never to be recovered.

4.1.3 The role of standards like 2167A and SDD

The TCSEC deals with only the security aspects of system building and although it gives lip
service to good software engineering practices, it does nothing to relate the activities that it
requires to those required by other applicable software engineering standards. We advocate an
integrated approach.

Although many developers view them as nothing more than a burden that causes the cre-
ation of unnecessary and unusable documentation forms,the purpose of standards such as 2167A
and SDD is to impose a uniform process on development practices and to capture the results
of the process in a uniform fashion.

If the process is followed, or the documentation is organized as though it had been [10],
the use of these standards can make a direct and substantial contribution to the development
of the mapping. On the other hand if the standards are given lip service and the required doc-
uments judged on format rather than on content, the standards will not play a substantive role
in the development of the mapping and the information that they should contain will have to
be obtained elsewhere, probably at considerable additional expense.

4.2 Decomposing the TCB

This subsection deals with the problem of identifying those elements of the TCB, whether rep-
resented as code or data, that perform a discrete function that can be mapped to either an im-
plicit or explicit requirement of the TCB or that must be contained within the TCB to satisfy
some unstated meta requirement.

16



4.2.1 Analysis of the Code

In analyzing the code, there are a number of factors that should be kept in mind. In this section,
we point out some of the key issues.

This is a code to DTLS mapping. The mapping process is driven by the code. Each seg-
ment of code is analyzed to determine what it does and how this helps to satisfy some DTLS
requirement.

Each component of the code does something. The code analysis should abstract what
the code is doing. If the code is well constructed, this will be simple. If the code is convoluted
and complex, determining its functionality will be difficult and the mapping dubious.

What it does ought to map to an identifiable DTLS derived specification. This is the
actual mapping process. The correspondence between code and specification should be man-
ifest. In a cleanly implemented system, most mapping items will be one to one. Each code
fragment will map to exactly one specification. It is possible that a given code fragment will
map to more than one specification and that more than one fragment will map to a single spec-
ification.

Code that maps to no spec is suspect. Code that cannot be clearly mapped to some DTLS
derived requirement is suspect. It requires careful justification and an explanation for its ex-
istence. If it represents some essential functionality not covered by the DTLS, consideration
should be given to revising the DTLS and repeating the DTLS based assurance steps such as
covert channel analysis and DTLS to FSPM mapping. If it cannot be justified, it should be
removed.

Specs without code to satisfy them are worse. They represent a failure to implement
some required security relevant functionality.

4.2.2 Graph based methods

Calling trees or graphs starting with each TCB entry point and showing the routines that can
be reached from the entry point are a useful technique. Routines that appear in more than one
graph need careful attention to ensure that they do not permit information flows between func-
tions that should be isolated. In this section, we outline a process for developing the calling
trees and consider some of the issues that may arise in using this approach.

Calling tree analysis: Under the assumption that each TCB function starts with a subroutine
entry, the calling tree that starts with that entry identifies a chunk of code that is poten-
tially executed by invoking the TCB function.

Calling trees vs. slices: Technically, we want the slice of code that can be executed as a re-
sult of a call on a TCB routine. This will be contained within the routines identified by
the calling tree. If the code associated with the operation does not start with a call to a
subroutine, we may have to explicitly identify the slice.

Shared Subroutines: If we have a calling tree, or the slice contains subroutine calls, we need
to check to see if the same subroutines are being shared among the slices associated with
more than one TCB function. If this is the case, we need to analyze for potential informa-
tion flows between TCB functions. Subroutines that access or modify global variables
or that retain values between calls require special attention.

17



Difficult cases: In some cases, we may need to identify and analyze separately the threads
that make up a slice. This is likely to be the case when a cursory analysis seems to in-
dicate a troublesome sharing of information between TCB routines. It may be the case
that the parameters used in the individiual invocations of the shared routines partition the
execution paths in such a way that the unwanted sharing does not occur. Serious consid-
eration should be given to partitioning the code into separate routines so that subsequent
modifications do not inadvertantly introduce sharing where none is intended.

4.2.3 Dealing with data structures

Active code is not the only portion of the TCB that must be mapped. The state of the TCB
is represented by values contained in its data structures. These must also be described in the
mapping and the relationship between the TCB data structures and the implicit or explicit state
abstraction of the DTLS explained.

Implicit data structures may arise in the DTLS in a variety of ways. The DTLS may use
adjectives such as “locked” as in “locked file” to talk about results that are represented by data
structures or variables and their values in the TCB. An important part of the mapping process
is the preparation of a list of variables, variable fields, etc. that represent the “state” of the
TCB. A key characteristic of state data items is persistence. A persistent variable retains a
value from one state transition to the next. Depending on the language used to implement the
TCB, persistent variables may be represented in a variety of ways. One is as global variables,
either scoped to be accessible within a module or accessible by any routine within the TCB. In
Ada, these will typically be package-level variables. In C, they will be variables declared at
the file scope or explicitly declared static. Other languages may be use different constructs
to obtain the same effect.

One subtle point in identifying persistent variables comes about because certain variables
may be mapped onto particular hardware registers or memory locations, and may be affected
in non-obvious ways as a result of hardware operations. Another arises when what appears
to be a simple data item at the DTLS level is implemented as the result of a computation. For
example, “device busy” at the DTLS level might be computed within the TCB from the current
size of the device buffer — with a size of zero denoting a non-busy status.

4.2.4 Code and Data that do not map up

We have identified TCB code that does not map to explicit DTLS requirements. There are
several possibilities:

� The code implements some functionality implicit in the DTLS, but not explicitly called
for. For example, the DTLS may describe each of the TCB functions as though it were a
subroutine callable by the user while the TCB implementation is actually invoked via a
system call instruction, the arguments of which identify the function to be called. In this
case, the code to decode the system call and dispatch to the correct routine responds to
the implied requirement for a method to invoke the operations described by the DTLS
but cannot be attributed to any particular function.

� Code that responds to an understood meta requirement. The DTLS describes the op-
erations that a user may invoke in an operating system TCB but does not describe the

18



mechanisms that are used to decide which user process will be run at a given time. The
scheduler code for the system responds to a meta requirement, but cannot be attributed
to any security relevant functionality described in or implied by the DTLS.

The need for the TCB to contain functionality of this sort means that the Code to DTLS
mapping will not always identify a specific DTLS requirement that is satisfied by a TCB ele-
ment.

4.3 DTLS Decomposition

The DTLS ought not be incomplete, but we may have to deal with non functional or distributed
requirements such as:

� The TCB shall be implemented in a well structured manner.

� When invoked, a TCB operation shall be performed promptly.

4.3.1 Identifying mappable specifications in the DTLS

The DTLS can take many forms. Good DTLS representations are non-procedural. With rare
exceptions, code is imperative and procedural. The the task at hand is to identify the specific
sections of the DTLS to which particular segment of code responds. The approach is to de-
compose the DTLS to identify the specific functions that it requires the system to perform or
the results that it requires the system to achieve.

Each function should be identified and listed separately. The purpose of this decomposi-
tion is to ensure that each requirement specified in the DTLS is explicitly identified. In a well
constructed DTLS, developing the list will be straightforward, but even in this case it is possi-
ble for apparently simple abstract operations to give rise to multiple concrete requirements. A
DTLS that is written in natural language may also contain implicit requirements that must be
made explicit in the decomposition process. It is also likely to contain separable requirements
conjoined in a single sentence.

The decomposition should be accompanied by a cross reference (possibly expressed in a
tabular form as described below) that traces each individual requirement to an identifiable re-
gion in the DTLS. The coordinate system used to create the cross reference is immaterial, but
it should take into account the fact that the DTLS may not be static. Using section, paragraph,
and sentence offsets is less subject to drastic upset in the face of minor changes than is using
line numbers.

The decomposition should include a placeholder for “null” or immaterial functionality that
can be used to represent those portions of the DTLS (if any exist) that do not contain functions
or requirements that will be implemented. If this is done, it will be possible to analyze the cross
reference to show that it covers the entire DTLS. This is one part of showing the completeness
of the code to DTLS mapping.

4.3.2 Analysis of a DTLS

A good DTLS is non procedural, in that it stresses the desired result rather than a way in which
the result can be obtained. Performing the mapping often requires analyzing the DTLS to iden-
tify the individual requirements that are realized by the code. It may be necessary to transform

19



the DTLS substantially to obtain mappable requirements. This section examines some of the
issues associated with the analysis of a DTLS.

The typical DTLS is a textual document. The DTLS is relatively informal. Even when it
has a significant mathematical content, it relies on expository material for a substantial portion
of its meaning.

We must identify the individual specifications and requirements. Extracting require-
ments from the DTLS may be trivial or complex, depending on the form of the DTLS and the
degree of abstraction that it uses. Relatively abstract concepts such as mathematical sets and
mappings may be used in the DTLS. The implementation code is required to realize equivalent
functionality through an appropriate choice of data structures and algorithms. It is important to
note that the code need not implement all the mathematical operations possible for the abstrac-
tion, only those that are actually used in the DTLS. This simplification is often overlooked.

This implies a possible post processing step. Post processing extracts from the DTLS the
list of individual requirements that can be targets of mapping from code. This postprocessing
can be facilitated with some care in the construction of the DTLS. Using constructs whose
meaning is clear is a big help. Organizing the DTLS so that requirements are clearly and easily
separable is also a winner. Ensuring that the DTLS is structured in such a way as to avoid
distributing a single requirement across multiple sections is also a help.

Software Engineering Environments can help. An integrated Software Engineering En-
vironment can provide a variety of support functions that will simplify extracting requirements
from the DTLS. Among these are data dictionaries, cross reference facilities, etc. For a DTLS
written in a pseudo code supported by the SEE, a variety of additional tools may be available.

The result of The DTLS analysis must be a collection of identifiable specification items.
It is these items that will be the primary targets of the mapping process. They will also serve
other roles in the development of the system.

Spec items must be clear and testable. Testable serves two purposes here. From the map-
ping point of view, a testable spec item is one for which inspection of the code will determine
whether or not the code meets the specification. In addition, it should be possible to devise a
suitable, system-level, test case to demonstrate that the system meets the spec requirement.

Spec items may refer to operations performed by single functions or proceduresor
They may refer to operations performed by a thread of control. The former are usually

the easiest to map as the code to satisfy the spec is localized. A requirement that is satisfied by
a thread of control or by multiple segments of code are harder to map as an argument for the
collective satisfaction of the requirement needs to be presented.

4.4 Identifying TCB to DTLS Correspondence

This section describes the techniques to be used in the preparing the TCB and DTLS to facili-
tate the mapping process. It also discusses tools and techniques that will help in recording and
presenting the mapping.

4.4.1 Hooks

The process of performing the mapping process is simplified by annotating both the code and
the DTLS with cross references that facilitate the comparison of the two representations. We
refer to these as hooks. Hooks may be in the form of absolute references to document sections,

20



to page numbers, or to specific routines in the code can cause maintenance problems as the sys-
tem evolves. Or one may use symbolic hooks, relying on a tool such as a document processor
to produce the appropriate entries in the final document. This is an area where mechanized
support should be used if at all possible.

4.4.2 Constructing hooks in the mapped code base

A properly implemented TCB will be built to simplify the mapping process. Its structure will
closely mimic the structure of the DTLS. Hooks to facilitate the mapping process can be in-
serted into the code as comments pointing out the structural relationship between the code and
the DTLS and identifying the DTLS requirements that the coded is intended to satisfy.

When an explicit requirements list such as the one discussed above is combined with ap-
propriate code hooks and data structure mappings, the evaluation of a code to DTLS mapping
is greatly simplified. The comments should be designed to permit the evaluators to identify
the particular DTLS requirement to which the code is responding. The comments should be
scoped in a way that permits code that responds to no requirements to be identified. If the
DTLS has been decomposed into a list of discrete requirements prior to inserting these com-
ments, the comments should be directed to the list entries. If they are directed to the DTLS
and a DTLS decomposition is subsequently produced, they should be changed to facilitate the
mapping process.

4.4.3 Hooks in the DTLS

The placement of hooks in the TCB is simplified by the fact that the DTLS exists prior to the
design and coding phases that produce the TCB. While it is not feasible to make explicit ref-
erence to yet to be written code in the DTLS, these references can be added, either during the
coding process or during the reviews involved in preparing the mapping. The use of symbolic
hooks that can be mechanically transformed into appropriate cross references is highly recom-
mended.

4.4.4 Tabular methods

Constructing a convincing argument requires the components of the argument to be presented
in some usable form. One simple form is by presenting the arguments and their support in a
tabular form. These tables would provide a checklist to ensure that both the code and the DTLS
are completely accounted for in the mapping process.

These tables are not an end in themselves. Rather, they are a means for focusing the eval-
uators attention on the arguments that provide the mapping process with the meaning that pro-
vides assurance. Analysis of these tables can identify regions of the DTLS, code, or data that
have been omitted from the mapping, but simply having been included in a mapping among
components is not sufficient to provide assurance. Ensuring that each component in the DTLS
is represented in the TCB doesn’t assure that every DTLS component is appropriately mapped
to the components of the TCB to which they apply. It is the responsibility of the analyst to
ensure that the meaning of the DTLS is represented in the TCB.

21



4.4.5 Databases

Databases are useful for recording data about the mapping process and about the code being
analyzed. They can support the analysis process by aiding the analyst in answering questions
about the system under consideration.

There are a number of commercially available database systems that can be used to support
mapping activities. They run on platforms ranging from PCs to mainframes. Using a database
to maintain information about the mapping has a number of advantages. The foremost benefit
is that a database approach provides a flexible way to generate reports about both the context
and status of the mapping. A secondary benefit is the possibility of using the database system
to answer questions about the mapping. For example, if DTLS, code, and data items are appro-
priately identified, it will be possible to determine whether code that responds to no discrete
DTLS requirements exists.1

Developers and evaluators should be aware of developments in areas such as object ori-
ented databases and hypertext that may simplify the mapping representation process in the fu-
ture.

4.5 Making the Mapping Argument

In previous sections, we’ve described approaches and techniques for the analysis of the TCB
and DTLS into appropriate elemental components, and techniques for building and document-
ing the associations. Having used some appropriate technique to define the collections of sep-
arable requirements from the DTLS, the appropriate components of the TCB, and a mapping
among them, we must finally construct the assurance argument.

The assurance argument is the part of this process that must actually convince the evaluator;
it is the most important part of the mapping. This argument must present a convincing case that,
despite the differences in detail, level of abstraction, and notation, the TCB does exactly what
the DTLS requires, and that it is doing nothing except what is required to meet the security-
critical requirements of the system as a whole.

To be convincing, this argument needs to be sufficiently rigorous to allow the evaluator to
feel confident that the argument is sound, and the argument needs to be sufficiently complete to
allow the evaluator to feel confident that the argument leaves no gaps. The question of what is
“sufficiently rigorous and complete” is one that must be settled on a case by case basis — what
would be an appropriate level of rigor for a C2 system is quite different from what is required
in an A1 system.

Thus these arguments may take many forms, depending on the degree of assurance that is
required. In highly secure systems it may be appropriate to make a complete formal verifica-
tion of the TCB (although this is a stronger degree of verification than is currently required of
A1 systems.) Formal verification provides very strong assurance that the requirements of the
DTLS have been satisfied by the TCB. However, a formal verification requires the specifica-
tions of the DTLS to be stated as or transformed into mathematical statements, and requires
a full proof of correctness of the TCB. While this is not impossible, it requires substantial re-
sources and careful planning early in the process.

1Exists may be too strong. What the database query can show is gaps in the indices, e.g., code regions that
have not been mapped to some DTLS requirements.

22



One step back from performing a full formal verification of the TCB’s meeting its require-
ments is to verify the TCB through hand-proof techniques. Where a full formal verification
requires the use of various tools such as theorem provers or proof-checkers to provide assur-
ance of the validity of the proof, hand-proof techniques use instead documented rigorous rea-
soning performed by a human. This is usually understood to provide less assurance than a
fully-formalized machine-checked proof, but is it nothing to scoff at: mathematicians have
managed to get along with only hand-proof for thousands of years.

Both full verification and hand-proof would be a very convincing way to approach the TCB
to DTLS mapping. Both are stronger methods than those required for B3 evaluation. In place
of these more rigorous methods, most evaluations at the B3 level will depend on mathematically-
stated prose or straightforward prose arguments.

These can be used effectively, but must be used with care. It is entirely too easy for a prose
argument to slip over into hand-waving. The evaluation of the TCB is one of the most impor-
tant components of assuring trust in a trusted system. Evaluators should and must be somewhat
suspicious; they should approach these mapping arguments with a critical eye.

23



References

[1] D.E. Bell and L.J. La Padula. Secure computer system: Unified exposition and Multics
interpretation. Mitre Technical Report MTR-2997, Mitre Corp., Bedford, MA, March
1976.

[2] James W. Freeman and Richard B. Neeley. A structured approach to code correspondence
analysis. In Proc. 5th Annual COMPASS: Conference on Computer Assurance, pages
109–116. IEEE, June 1990.

[3] CTA Incorporated. Implementation evaluation guideline, a chapter of the handbook for
the computer security evaluation of trusted systems. To be published as a NRL Technical
Memorandum, October 1993.

[4] Sue Landuer. Personal Communication, 1990. Telephone conversation with Carl
Landwehr of NRL.

[5] C. Landwehr, C. Heitmeyer, and J. McLean. A security model for military message sys-
tems. ACM Transactions on Computer Systems, 2(3):198–222, August 1984.

[6] Carl E. Landwehr, Alan R. Bull, John P. McDermott, and William S. Choi. A taxonomy
of computer program security flaws, with examples. Technical report, Naval Research
laboratory, November 1993.

[7] John McLean. Proving noninterference and functional correctness using traces. Journal
of Computer Security, 1(1), 1992.

[8] Jonathan K. Millen. Models of multilevel computer security. Mitre Technical Report
MTR-10537, The Mitre Corporation, January 1989. Also in Advances in Computers,
Vol. 28, Academic Press.

[9] National Computer Security Center, Ft. Meade, MD. DoD 5200.28-STD, Trusted Com-
puter System Evaluation Criteria, December 1985.

[10] David L. Parnas and Paul Clement. A rational design process: How and when to fake it.
IEEE Transactions on Software Engineering.

[11] Charles N. Payne, Judith N. Froscher, and Carl E. Landwehr. Toward a comprehensive
INFOSEC certification methodology. In Proceedings of the 16th National Computer Se-
curity Conference, pages 165–172, Baltimore, MD, September 1993. NIST/NSA.

[12] Jane Solomon. Specefication-to-code correlation. In IEEE Symposium on Security and
Privacy, 1982.

[13] National Computer Security Center staff. Department of defense trusted computer system
evaluation criteria. Department of Defense Computer Security Center, December 1985.
DoD 5200.28-STD.

[14] Daniel F. Sterne. On the buzzword ‘security policy’. In Proc. Symposium on Research
in Security and Privacy. IEEE, June 1991.

24


